Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
PLoS One ; 17(11): e0277428, 2022.
Article in English | MEDLINE | ID: covidwho-2140645

ABSTRACT

COVID-19 (Coronavirus disease 2019) hit Europe in January 2020. By March, Europe was the active centre of the pandemic. As a result, widespread "lockdown" measures were enforced across the various European countries, even if to a different extent. Such actions caused a dramatic reduction, especially in road traffic. This event can be considered the most significant experiment ever conducted in Europe to assess the impact of a massive switch-off of atmospheric pollutant sources. In this study, we focus on in situ concentration data of the main atmospheric pollutants measured in twelve European cities, characterized by different climatology, emission sources, and strengths. We propose a methodology for the fair comparison of the impact of lockdown measures considering the non-stationarity of meteorological conditions and emissions, which are progressively declining due to the adoption of stricter air quality measures. The analysis of these unmatched circumstances allowed us to estimate the impact of a nearly zero-emission urban transport scenario on air quality in 12 European cities. The clearest result, common to all the cities, is that a dramatic traffic reduction effectively reduces NO2 concentrations. In contrast, each city's PM and ozone concentrations can respond differently to the same type of emission reduction measure. From the policy point of view, these findings suggest that measures targeting urban traffic alone may not be the only effective option for improving air quality in cities.


Subject(s)
Air Pollution , COVID-19 , Environmental Pollutants , Humans , Cities , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Policy
2.
Environmental Research Letters ; 16(7), 2021.
Article in English | ProQuest Central | ID: covidwho-1298930

ABSTRACT

Several studies investigated the possible impacts of the restriction measures related to the containment of the spread of the COrona VIrus Disease (COVID-19) to atmospheric ozone (O3) at global, regional, and local scales during 2020. O3 is a secondary pollutant with adverse effects on population health and ecosystems and with negative impacts on climate, acting as greenhouse gas. Most of these studies focused on spring 2020 (i.e. March–May) and on observations in the planetary boundary layer (PBL), mostly in the vicinity of urban agglomerates. Here, we analyzed the variability of O3 above the PBL of northern Italy in 2020 by using continuous observations carried out at a high mountain WMO/GAW global station in Italy (Mt. Cimone–CMN;44°12′ N, 10°42′ E, 2165 m a.s.l.). Low O3 monthly anomalies were observed during spring (MAM) and summer (JJA), when periods of low O3 intertwined with periods with higher O3, within climatological ranges. A similar variability was observed for O3 precursors like NO2 and 15 anthropogenic non-methane volatile organic carbons, but the systematic O3 anomalies were not reflected in these variables. The analysis of meteorological variables and diel O3 cycles did not suggest major changes in the vertical transport related to the thermal circulation system in the mountain area. The analysis of five days back-trajectories suggested that the observed O3 anomalies cannot be explained by differences in the synoptic-scale circulation with respect to the previous years alone. On the other hand, the characterization of two transport patterns (i.e. air masses from the regional PBL or from the free troposphere) and the analysis of back-trajectories suggested an important contribution of transport from the continental PBL during the periods with the lowest O3 at CMN. When proxies of air mass transport from the regional PBL are considered, a lower NO x content was pointed out with respect to the previous years, suggesting a lower O3 production in a NO x -limited atmosphere. Our study suggested for the first time that, during MAM and JJA 2020, the reduced anthropogenic emissions related to the COVID-19 restrictions lowered the amount of this short-lived climate forcer/pollutant at remote locations above the PBL over northern Italy. This work suggests the importance of limiting anthropogenic precursor emissions for decreasing the O3 amount at remote locations and in upper atmospheric layers.

SELECTION OF CITATIONS
SEARCH DETAIL